1. Propene ✓

[1]

2. (i) $-CH_2CHCl- + 2\frac{1}{2}O_2 \rightarrow 2CO_2 + H_2O + HCl \checkmark$

1

1

(ii) Alkali **OR** base **OR** carbonate ✓

ALLOW correct formula of or named carbonate OR alkali OR base
Correct name and wrong formula does not score

[2]

3. Any two marks from the following:

Develop photodegradable polymers ✓

Develop biodegradable polymers **OR** develop compostable polymers ✓

Develop techniques for cracking polymers

OR develop use as a chemical feedstock ✓

Develop ways of making polymers from plant-based substances **OR** reduce the need to use finite raw materials such as crude oil ✓

Designing processes with high atom economy

OR reduce waste products during manufacture ✓

Develop ways of sorting **AND** recycling polymers ✓

[2]

4.

one mark for each correct structure \checkmark \checkmark \checkmark

ALLOW skeletal formula OR displayed formulae

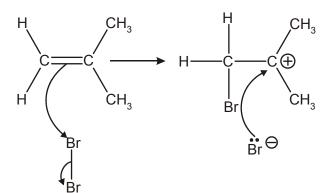
IGNORE molecular formulae

IF two answers given e.g. name and structure then both must be correct to be given a mark

ALLOW methylpropane OR (CH₃)₃CH ✓

ALLOW 1, 2-dibromo-methylpropane **OR** $CH_2BrCBr(CH_3)_2 \checkmark$

ALLOW 1-bromo-methylpropane **OR** CH₂ Br CH (CH₃)₂ ✓

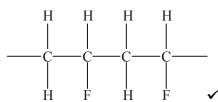

ALLOW 2-bromo-methylpropane **OR** CH₃ CBr (CH₃)₂ ✓

ALLOW ecf if wrong carbon skeleton is used in all of the structures mark first structure wrong and then apply ecf for the rest

[4]

curly arrow from double bond to Br^{δ+} and curly arrow from Br—Br bond pair to Br^{δ−} in 1st step ✓
 curly arrow in 2nd step from bromide ion ✓
 correct dipole shown on Br₂ ✓

correct carbocation shown ✓


Curly arrow must start from the double bond and not a carbon atom, other curly arrow must start from Br—Br bond

ALLOW curly arrow from any part of bromide ion
The bromide ion does not need to show a lone pair
Dipole must be partial charge and not full charge
Carbocation needs a full charge and not a partial charge
(charges do not need to be surrounded by a circle)

ALLOW carbocation on carbon 1 where electrophile attacks carbon 2 i.e. ${}^{+}CH_{2}CBr(CH_{3})_{2}$

[4]

6. (i)

Free bonds at bond ends must be present

ALLOW minor slip e.g. missing one hydrogen and left as a stick

ALLOW more than two repeat units but must be a whole number of repeat units

IGNORE brackets, use of numbers and n in the drawn structure

[2]

1

7. Any two from:

separation into types and recycling \mathbf{OR} sort plastics, melt and remould \checkmark

combustion for energy generation ✓

used for cracking **OR** feedstock for plastics or chemicals ✓

IGNORE biodegradable

used as a fuel is insufficient releases energy is insufficient

ALLOW burning plastics to release energy

ALLOW organic feedstock / raw materials to make organic compounds

[2]

8. 1st bullet

product: CH₃CH₂CHBrCH₂Br (1)

equation: $CH_3CH_2CH=CH_2 + Br_2 \rightarrow CH_3CH_2CHBrCH_2Br$ (1)

products: CH₃CH₂CHBrCH₃ and CH₃CH₂CH₂CH₂Br (1)

(or statement that 2-bromo- is formed)

equation: $CH_3CH=CHCH_3+HBr \rightarrow CH_3CH_2CHBrCH_3$ (1)

(*i.e.* for one product)

products: CH₃CH₂CHOHCH₃ and CH3CH2CH2CH2OH (1)

(or statement that 2-ol is formed)

equation: $CH_3CH=CHCH_3 + H_2O \rightarrow CH_3CH_2CHOHCH_3$ (1)

(i.e. for one product)

2nd bullet

1 mark for skeleton with two repeat units (1) 1 mark for correct groups on side chains (1)

2

3rd bullet

two (1) (1) from energy from incineration development of biodegradable polymers cracking of waste polymers

[10]

- **9.** (a) (i) phosphoric acid/H⁺/sulphuric acid
 - (ii) lone/electron pair of electrons acceptor

1

2

(b) (i)

Step 1 curly arrow from π -bond to H⁺ 1
Step 2 curly arrow from lone pair on the O^{δ -} to C+ 1
Step 3 curly arrow from O—H bond to O+ 1

(ii) catalyst ... no marks because it is **not** consumed/used up in the reaction/owtte

[6]

10. (a) 3-chloro(-2-)methylprop-1-ene/1-chloro(-2-)methylprop-2-ene

1

(b)

Backbone of 4 carbons and a reasonable attempt gets 1 mark.

2

[3]

11. (a)

$$C_2H_5$$
 C_2H_5
 C_2H_5

curly dipoles shown correctly on the Br–Br and curly arrow from the Br–Br bond towards the Br^δ correct intermediate shown 1 curly arrow from the lone pair or the negative charge on the Br $^-$ to the C+

- (b) (i) Hs are diagonal to each other in the *trans/* difference clearly shown in a diagram
 - (ii) (the product is saturated hence) there is no restricted rotation/single bonds allow rotation/because C=C prevents rotation

[6]

1

12. H₂ 1
Ni/Pt/Pd (catalyst) 1

[2]

13.	(i)	alkene 1	
		bromine 1	
		decolourises 1	
	(ii)	3-methylhex-2-en-1-ol/ 1-hydroxy-3-methylhex-2-ene	
			[4]

14. margarine

Ni catalyst 1
hydrogen/ hydrogenated 1

unsaturated vegetable oil/fat 1

poly(propene)

equation

two repeat units

(Ziegler) catalyst / high temp/heat/use of an initiator

Problems with disposal

non-biodegradable/don't decompose/not broken down by bacteria etc 1 when burnt produces toxic fumes 1

Future methods of disposal

recycling (to produce new polymers)

incineration for energy (production)

cracking/owtte (to produce useful organic molecules)

use gas scrubbers to reduce toxic fumes

any two

max = 9

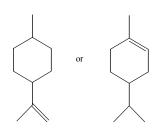
QWC

Answer is well organised/structure and using at least three of:

catalyst, hydrogenation, addition polymerisation, Ziegler, incineration, feedstock, recycling, non-biodegradable, initiator, monomer, unsaturated.

in the correct context.

15. (a) (i)
$$C_5H_8$$


(ii)
$$C_5H_8$$

[10]

1

(ii) 1 mark for C_5H_{12} 1 mark for correct balancing 1 1

(iii)

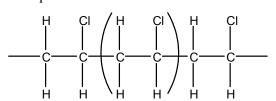
[6]

16. (i) electron/lone pair acceptor

1

1 1 1

1


(ii)

$$H_3C$$
 C_2H_5
 C_2H_5

curly arrow from π -bond to Br^{δ^+} Dipoles on the Br–Br bond and curly arrow from Br–Br bond to Br^{δ^-} Curly arrow from Br^- to C^+

[4]

- 17. (i) correctly shows three repeat units with 'end bonds' correctly identifies the repeat unit
- 1

(ii) harmful/toxic fumes are produced

1

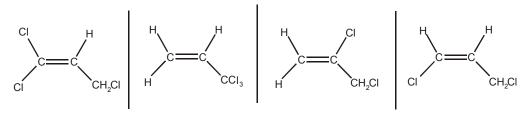
2

(iii) recycle/remove HCl by using gas scrubbers or wtte/crack polymers/used a feedstock/ source of fuel (in an incinerator)/developing biodegradable alternatives.

[5]

18. (a) (i) 24.7/12: 2.1/1: 73.2/35.5

2.06: 2.1: 2.06


CHC*l* 1

(ii) (CHCl = 12 + 1 + 35.5 =) 48.5

 $48.5 \times 3 = 145.5$

(b) (i) Any two from

2

1,1,3 -trichloro

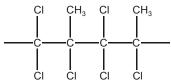
3,3,3 -trichloro

2,3,3 -trichloro

1,3,3 -trichloro

(ii) 1, 2,3-trichloropropene

(trichloropropene scores 1 mark ✓)


3 marking points:

- correct numbers 1, 2,3
- trichloro
- propene/prop-1-ene

any two gets 1 mark

2

(c) (i) 2

1 mark if backbone contains 4 carbons with 'endbonds' and a reasonable attempt has been made e.g used the wrong isomer.... max = 1 mark

(ii) non-biodegradable

1

toxic fumes evolved when burnt

1

1

 $\mathrm{HC}l$ or $\mathrm{C}lullet$ or chlorinated organic compounds such as $\mathrm{COC}l_2$ also evolved when burnt

[13]

19. (i) decolourises

1

(ii)

$$\begin{array}{c} CH_3CH_2 & CH_2CH_2OH \\ H & CH_3CH_2 & CH_2CH_2OH \\ H & Br & Br & CH_3CH_2 & CH_2CH_2OH \\ H & CH_3CH_2 & CH_2CH_2 & CH_2CH_2OH \\ H & CH_3CH_2 & CH_2CH_2 & CH_2CH_2 & CH_2CH_2 & CH_2CH_2 & CH_2CH_2 \\ H & CH_3CH_2 & CH_2CH_2 & CH_2CH_2 & CH_2CH_2 & CH_2CH_2 & CH_2CH_2 \\ H & CH$$

curly arrow from C=C bond to bromine 1 dipoles on Br_2 or curly arrow to show movement of bonded pair of electrons 1 intermediate carbonium ion/carbocation 1 curly arrow from lone pair on the Br- ion to carbonium ion (Br^{δ} - loses 1 mark) 1

[5]

20. (a) (i) reaction 1

1

(ii) reaction 4

1

1

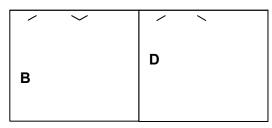
(iii) reaction 3

1

(b) (i) lone pair/electron pair donor

 CH_2 CH_2

Correct dipole 1


Curly arrow from the O in the OH to C in the CH₂

Curly arrow to show movement of bonded pair in the C-Cl bond 1

 $C\Gamma$ as a product

(c) (i) same molecular formula , different structure/arrangement of atoms. (same formula, different structure.)

(d) (i) addition, (not additional)

(ii) poly(propene)/ polypropene/ polypro-1-ene, polypropylene 1

(iii)

⊓ н н [15]

2

21. (i) decolourises/not clear/not discolours

(ii)

curly arrow from C=C to $Br^{\delta+}$

dipole on Br-Br **and** curly arrow showing movement of bonded pair of electrons

correct intermediate/carbonium ion/carbocation **and** curly arrow from Br⁻ to C+

from Br⁻ to C+

1, 2-dibromopropane as product

[5]

22.	CH ₃	CBr_2CH_3	1	
	CH ₃	CHBrCH₂Br	1	
	CH ₃	CH ₂ CHBr ₂	1	
	1, 2-	3CHBrCH ₂ Br has a chiral centre, hence optical isomers of dibromopropane are acceptable but must be drawn with lge-shape' bonds and be non-superimposable mirror images)		[3]
23.	(i)	unsaturated contains a double/multiple/ π bond \checkmark	1	
		hydrocarbon contains hydrogen and carbon only . ✓	1	
	(ii)	angle a 109 −110° ✓	1	
		angle b 117 −120° ✓	1	
	(iii)			

8-8

Diagram to show a minimum of 2 carbons, each with a $\sigma\text{-bond}$ and p-orbitals \checkmark

Overlap of adjacent p-orbitals (in words or in diagram) ✓ 2

[6]

24. (i) *electrophile*: lone pair (of electrons) acceptor. ✓

1

(ii)

essential mark intermediate carbocation/carbonium ion, accept primary

/"triangular"/ ✓

essential mark product 🗸

curly arrow from double bond to $Br_2 \checkmark$

curly arrow showing movement of electrons in the Br-Br bond \mathbf{or} the dipole in the Br-Br \checkmark

curly arrow from lone pair of electrons in Br[−] to intermediate ✓ mark any errors first

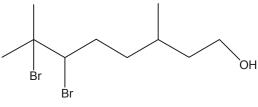
5 max

[5]

1

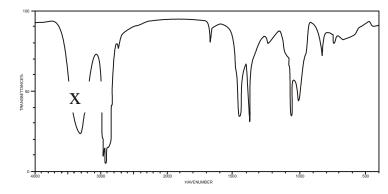
[4]

26.	(a)	(i)	alkene ✓	1
			alcohol/hydroxy/hydroxyl ✓	1


1

(b) I = alkene & II = alcohol... both are needed \checkmark (i)

(ii) decolourised / colourless ✓


(iii)

1

1

(iv) \mathbf{X} as shown below \checkmark

(ii) compound **B** is
$$C_{10}H_{22}O$$
 \checkmark

(iii)
$$C_{10}H_{20}O + H_2 \rightarrow C_{10}H_{22}O \checkmark$$
 1

[9]

27.

1 mark is available if the backbone consists of 4 C atoms and a reasonable attempt has been made ✓✓

[2]

28.	(a)	(i)	Alkene/C=C ✓		1	
			Alcohol/ROH/hydroxy/hydroxyl/OH (not OH⁻ or hydroxide) ✓		1	
		(ii)	One of the C in boare the same ✓	oth C=C is joined to two atoms or groups that	1	
	(b)	Obse	ervation	decolourisation (of Br_2) \checkmark	1	
		Mole	ecular formula	$C_{10}H_{18}OBr_4 \checkmark \checkmark$	2	
				$C_{10}H_{18}OBr_2$ gets 1 mark		
(c)		reage	ent	CH₃COOH ✓	1	
		catal	yst	$H_2SO_4/H^+/HCl$ (aq) or dilute loses the mark \checkmark	1	
	(d)	(i)	$C_{10}H_{18}O + 2[O] -$	$\rightarrow C_{10}H_{16}O_2 + H_2O \checkmark \checkmark$	2	
			1 mark for H ₂ O at	nd 1 mark for 2[O]		
		(ii)	The infra-red spec	etrum was of compound Y		
			because absorptio	n between 1680 − 1750 cm ⁻¹ indicates a C=O ✓	1	
			and the absence of	f a peak between 2500 – 3300 cm ⁻¹ shows the absence		
			of the OH hydrog	en bonded in a carboxylic acid 🗸	1	[12]

PhysicsandMathsTutor.com 16